Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

نویسندگان

  • Gary Gimmestad
  • Haviland Forrister
  • Tomas Grigas
  • Colin O’Dowd
چکیده

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airborne and Spaceborne Lidar

The evolution of lidar, from those early ground-based measurements to our first long-duration spaceborne experiments, is schematically represented in Fig. 13.1. It depicts the first lidars in the 1960s as ground-based, followed by systems first flown in 1969 on small aircraft, and followed in the late 1970s by lidars flown on large aircraft capable of long-range measurements. Starting in 1979, ...

متن کامل

Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (hsrl) Measurements and the Calipso Vertical Feature Mask

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 18 field missions across North America since 2006. The lidar measurements include scale-invariant aerosol parameters that vary with aerosol typ...

متن کامل

Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavel...

متن کامل

Signal processing and calibration of continuous-wave focused CO(2) Doppler lidars for atmospheric backscatter measurement.

Two continuous-wave (CW) focused CO(2) Doppler lidars (9.1 and 10.6 µm) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on ran...

متن کامل

CALIPSO observations of stratospheric aerosols: a preliminary assessment

We have examined the 532-nm aerosol backscatter coefficient measurements by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for their use in the monitoring of stratospheric aerosol. CALIPSO makes observations that span from 82 S to 82 N each day and, for each profile, backscatter coefficient values reported up to ∼40 km. The possibility of using CALIPSO for stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017